监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...这里,谈一谈最简单的一元线性回归模型。

1.一元线性回归模型

模型如下:

\"\"

\"\"

总体回归函数中Y与X的关系可是线性的,也可是非线性的。对线性回归模型的“线性”有两种解释:

1)就变量而言是线性的,Y的条件均值是 X的线性函数

2)就参数而言是线性的,Y的条件均值是参数\"\"的线性函数

线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。

2.参数估计——最小二乘法

        对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:

        (1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
        (2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
        (3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。

        最常用的是普通最小二乘法( Ordinary  Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)

样本回归模型:

\"\"

残差平方和:

\"\"

则通过Q最小确定这条直线,即确定\"\",以\"\"为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:

\"\"

解得:

\"\"

3.最小二乘法c++实现

 

#include<iostream>

#include<fstream>

#include<vector>

using namespace std;

 

class LeastSquare{

double a, b;

public:

LeastSquare(const vector<double>& x, const vector<double>& y)

{

double t1=0, t2=0, t3=0, t4=0;

for(int i=0; i<x.size(); ++i)

{

t1 += x[i]*x[i];

t2 += x[i];

t3 += x[i]*y[i];

t4 += y[i];

}

a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2);

//b = (t4 - a*t2) / x.size();

b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2);

}

 

double getY(const double x) const

{

return a*x + b;

}

 

void print() const

{

cout<<"y = "<<a<<"x + "<<b<<"\\n";

}

 

};

 

int main(int argc, char *argv[])

{

if(argc != 2)

{

cout<<"Usage: DataFile.txt"<<endl;

return -1;

}

else

{

vector<double> x;

ifstream in(argv[1]);

for(double d; in>>d; )

x.push_back(d);

int sz = x.size();

vector<double> y(x.begin()+sz/2, x.end());

x.resize(sz/2);

LeastSquare ls(x, y);

ls.print();

cout<<"Input x:\\n";

double x0;

while(cin>>x0)

{

cout<<"y = "<<ls.getY(x0)<<endl;

cout<<"Input x:\\n";

}

}

}

 

点赞(0) 打赏

评论列表 共有 0 条评论

评论功能已关闭

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部