将系统分析方法和数学建模技术应用于小麦管理知识表达体系,通过解析和提炼小麦生育及管理指标与环境因子及生产水平之间的基础性关系和定量化算法,创建了小麦管理动态知识模型WheatKnow;充分利用软构件的技术特点,在VisualC++和VisualBasic平台上研制了数字化和组件化小麦管理动态知识模型系统,实现了播前栽培方案的设计和产中适宜调控指标动态的预测2大功能。其中,播前栽培方案包括产量目标、适宜品种、播期、基本苗及播种量、肥料运筹和水分管理;产中调控指标包括适宜生育期、穗分化进程、生长指标、源库指标和营养指标动态。利用不同生态点、不同品种、不同土壤等资料及大田对比试验对所建知识模型进行实例分析和检验的结果表明,所提出的小麦管理动态知识模型总体上具有较好的广适性和决策性。本研究克服了传统作物栽培模式与专家系统地域性强和广适性弱的不足,从而为实现作物栽培管理的精确化和数字化奠定了基础。

点赞(0) 打赏

评论列表 共有 0 条评论

评论功能已关闭

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部